每个科目都有我们的学习技巧,但其实都是万变不离其中的,基本不能离开背、记,练,数学作为最烧脑的科目之一,也是一样的。智学网为各位同学整理了《高中一年级数学必学三要点笔记总结》,期望对你的学习有所帮助!
1.高中一年级数学必学三要点笔记总结 篇一
1.概念:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一块,就组成了一元一次不等式组。
b.一元一次不等式组中每个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考试知识点:
①解一元一次不等式
②依据具体问题中的数目关系列不等式并解决简单实质问题
③用数轴表示一元一次不等式的解集
2.高中一年级数学必学三要点笔记总结 篇二
系统抽样
1.系统抽样(等距抽样或机械抽样):
把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本使用简单随机抽样的方法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)
首要条件条件:总体中个体的排列对于研究的变量来讲,应是随机的,即没有某种与研究变量有关的规则分布。可以在调查允许的条件下,从不一样的样本开始抽样,对比几次样本的特征。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样,即等距抽样是实质中最为常见的抽样办法之一。由于它对抽样框的需要较低,推行也比较简单。更为要紧的是,假如有某种与调查指标有关的辅助变量可供用,总体单元按辅助变量的大小顺序排队的话,用系统抽样可以大大提升估计精度。
3.高中一年级数学必学三要点笔记总结 篇三
直线方程:
1.点斜式:y-y0=k
是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式像一次函数的表达式。
3.两点式;/=/
假如x1=x2,y1=y2,那样两点就重合了,等于只有一个已知点了,如此不可以确定一条直线。
假如x1=x2,y1y2,那样此直线就是垂直于X轴的一条直线,其方程为x=x1,不可以表示成上面的一般式。
假如x1x2,但y1=y2,那样此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不可以表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/+y/b=-kx/b+y/b=/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b,其中-x/b=k,c/b=‘b’。ax+by+c=0在分析几何中更常用,用方程处置起来比较便捷。
4.高中一年级数学必学三要点笔记总结 篇四
总体和样本
①在统计学中,把研究对象的全体叫做总体。
②把每一个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,大家称它为样本.其中个体的个数称为样本容量。
简单随机抽样
也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特征是:每一个样本单位被抽中的可能性相同,样本的每一个单位完全独立,彼此间无肯定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,一般只不过在总体单位之间差异程度较小和数目较少时,才使用这种办法。
简单随机抽样常见的办法
①抽签法
②随机数表法
③计算机模拟法
④用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异状况;
②允许误差范围;
③概率保证程度。
抽签法
①给调查对象群体中的每个对象编号;
②筹备抽签的工具,推行抽签;
③对样本中的每个个体进行测量或调查。
5.高中一年级数学必学三要点笔记总结 篇五
方程的根与函数的零点
1、函数零点的定义:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
求方程的实数根;
对于不可以用求根公式的方程,可以将它与函数的图象联系起来,并借助函数的性质找出零点.
4、二次函数的零点:
二次函数.
1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2、△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.