高一数学必学五要点整理

点击数:488 | 发布时间:2024-11-10 | 来源:www.kutkk.com

    高中一年级新生要依据我们的条件,与高中阶段学科常识交叉多、综合性强,与考查的常识和思维触点广的特征,找寻一套行之有效的学习技巧。智学网为各位同学整理了《高一数学必学五要点整理》,期望对你的学习有所帮助!

    1.高一数学必学五要点整理


    函数的值域与最值

    1、函数的值域取决于概念域和对应法则,不论使用何种办法求函数值域都应先考虑其概念域,求函数值域常用办法如下:

    直接法:亦称察看法,对于结构较为简单的函数,可由函数的分析式应用不等式的性质,直接察看得出函数的值域.

    换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数分析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

    反函数法:借助函数f与其反函数f-1的概念域和值域间的关系,通过求反函数的概念域而得到原函数的值域,形如的函数值域可使用此法求得.

    配办法:对于二次函数或二次函数有关的函数的值域问题可考虑用配办法.

    不等式法求值域:借助基本不等式a+b≥[a,b∈]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等方法.

    辨别式法:把y=f变形为关于x的一元二次方程,借助“△≥0”求值域.其题型特点是分析式中含有根式或分式.

    借助函数的单调性求值域:当能确定函数在其概念域上的单调性,可使用单调性法求出函数的值域.

    数形结合法求函数的值域:借助函数所表示的几何意义,借用于几何办法或图象,求出函数的值域,即以数形结合求函数的值域.

    2、求函数的最值与值域有什么区别和联系

    求函数最值的常用办法和求函数值域的办法基本上是相同的,事实上,假如在函数的值域中存在一个最小数,这个数就是函数的最小值.因此求函数的最值与值域,其实质是相同的,只不过提问的角度不同,因而答卷的方法就有所相异.

    如函数的值域是,但此函数无值和最小值,只有在改变函数概念域后,如x>0时,函数的最小值为2.可见概念域对函数的值域或最值的影响.

    3、函数的最值在实质问题中的应用

    函数的最值的应用主要体目前用函数常识求解实质问题上,从文字表述上常常表现为“工程造价最低”,“收益”或“面积”等很多现实问题上,求解时要特别关注实质意义对自变量的制约,以便能正确求得最值.

    2.高一数学必学五要点整理

    等差数列前n项和公式S的基本性质

    ⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式.

    ⑵在等差数列{a}中,当项数为2n时,S-S=nd,=;当项数为时,S-S=a,=.

    ⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

    ⑷若两个等差数列{a}、{b}的前n项和分别是S、T,则=.

    ⑸在等差数列{a}中,S=a,S=b,则S=.

    ⑹等差数列{a}中,是n的一次函数,且点均在直线y=x+上.

    ⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.

    3.高一数学必学五要点整理


    假如直线a与平面α平行,那样直线a与平面α内的直线有什么地方关系?

    平行或异面。

    若直线a与平面α平行,那样在平面α内与直线a平行的直线有多少条?这类直线的地方关系怎么样?

    无数条;平行。

    假如直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那样直线a、b的地方关系怎么样?为何?

    平行;由于a∥α,所以a与α没公共点,则a与b没公共点,又a与b在同一平面β内,所以a与b平行。

    综上剖析,在直线a与平面α平行的条件下大家可以得到什么结论?

    假如一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

    4.高一数学必学五要点整理


    映射、函数、反函数

    1、对应、映射、函数三个定义既有共性又有不同,映射是一种特殊的对应,而函数又是一种特殊的映射。

    2、对于函数的定义,应注意如下什么时间:

    (1)学会构成函数的三要点,会判断两个函数是不是为同一函数。

    (2)学会三种表示法——列表法、分析法、图象法,能根实质问题寻求变量间的函数关系式,尤其是会求分段函数的分析式。

    (3)假如y=f(u),u=g(x),那样y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

    3、求函数y=f(x)的反函数的一般步骤:

    (1)确定原函数的值域,也就是反函数的概念域;

    (2)由y=f(x)的分析式求出x=f—1(y);

    (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明概念域。

    注意:

    ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一块。

    ②熟知的应用,求f—1(x0)的值,合理借助这个结论,可以防止求反函数的过程,从而简化运算。

    5.高一数学必学五要点整理


    复数的定义:

    形如a+bi的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

    复数的表示:

    复数一般用字母z表示,即z=a+bi,这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

    复数的几何意义:

    复平面、实轴、虚轴:

    点Z的横坐标是a,纵坐标是b,复数z=a+bi可用点Z表示,这个打造了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

    复数的几何意义:复数集C和复平面内所有些点所成的集合是一一对应关系,即

    这是由于,每个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每个点,有惟一的一个复数和它对应。

    这就是复数的一种几何意义,也就是复数的另一种表示办法,即几何表示办法。

    复数的模:

    复数z=a+bi在复平面上对应的点Z到原点的距离叫复数的模,记为|Z|,即|Z|=

    虚数单位i:

    它的平方等于-1,即i2=-1;

    实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

    i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

    i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

    复数模的性质:

    复数与实数、虚数、纯虚数及0的关系:

    对于复数a+bi,当且仅当b=0时,复数a+bi是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国考试人事网(https://www.bzgdwl.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国考试人事网微博

  • 中国考试人事网

首页

财经

建筑

医疗